
Supplementary Material for Manipulate-Anything

Jiafei Duan 1∗ Wentao Yuan 1∗ Wilbert Pumacay 2 Yi Ru Wang 1

Kiana Ehsani 3 Dieter Fox 1,4 Ranjay Krishna 1,3

1University of Washington 2Universidad Católica San Pablo
3Allen Institute for Artificial Intelligence 4NVIDIA

Abstract: This is the supplementary material for MANIPULATE-ANYTHINGİt
comprises the detailed implementation of MANIPULATE-ANYTHING prompts,
simulation benchmark, and also the real-world experiments setup details. For
more detailed videos on both simulation and real-world experiments, refer to our
webpage: robot-ma.github.io.

Keywords: Zero-shot manipulation, multimodal language models, multiview state
verification, robot skill generation, behavior cloning, robotic manipulation

1 MANIPULATE-ANYTHING implementations

Action Generation Module. We generate each action using either an agent-centric or object-centric
approach. For object-centric action generation, we utilize M2T2[1], NVIDIA’s foundational grasp
prediction model, for pick and place actions. For 6-DoF grasping, we input a single 3D point cloud
from either a single RGB-D camera (in the real world) or multiple cameras (in simulation). The
model outputs a set of grasp proposals on any graspable objects, providing 6-DoF grasp candidates
(3-DoF rotation and 3-DoF translation) and default gripper close states. For placement actions, M2T2
outputs a set of 6-DoF placement poses, indicating where the end-effector should be before executing
a drop primitive action based on a VLM plan. The network ensures the object is stably positioned
without collisions. We also set default values for mask_threshold and object_threshold to
control the number of proposed grasp candidates. After proposing a list of template grasp poses, we
use QWen-VL[2] to detect the target object by prompting the current image frame with the target
object’s name, translated into Chinese using a machine translation model [3]. This detection is
applied to all re-rendered viewpoints or viewpoints from different cameras. We then concatenate
these frames into a single image, annotating each sub-image with a number at the top right corner.
Next, we call the GPT-4V API with few-shot demonstrations and the task goal to prompt GPT-4V to
output the selected number of viewpoints that provide the most unobstructed views for sampling the
grasp pose to achieve the sub-task. Using the selected viewpoint, we execute the grasp by moving the
end-effector to the sampled grasp pose via a motion planner.

For agent-centric action generation, we first perform the same steps of viewpoint selection. Using the
selected viewpoint, a few demonstration examples, and the sub-task, we prompt GPT-4V to generate
an action function with code snippets that include the necessary code to perform a delta-action
on the current robot pose. We then execute this by moving the end-effector based on these delta
changes. This process is iterated until we obtain the most desirable code snippet function for the
given sub-tasks, which is then appended to a skill library for future use.

Sub-task Verification Module The sub-task verification module helps with error recovery by ensuring
all potential attempts at resolving the current step action have been tried. With the temporary goal
state obtained by the action generation module, we use multi-viewpoints to sample the optimal
viewpoint for answering the verification condition generated for the given sub-task during the task
plan generation phase. Using the same viewpoint selection method as in the Action Generation
Module, we obtain the optimal view and then perform a two-step sequence rollout of frames: one

∗Equal contribution

https://robot-ma.github.io/


Figure 1: Sub-task Verification Module. We used viewpoint selection similar to action generation,
to find the optimal viewpoints, and roll out the two step sequences of the previous and current frames
for prompting the verification condition.

from the current frame at this viewpoint and another from the previous action step. We concatenate
these two frames, annotate them with numbers to indicate their temporal relation, and use this image
to prompt GPT-4V to check if the verification condition is fulfilled as shown in Fig. 1. If the answer
is Yes, we proceed to the next sub-task. If the answer is No, we resample new viewpoints, generate
new actions, and reattempt the entire sub-task with a different seed.

2 Simulation experiments

Simulation Setup. All the simulated experiments use a four-camera setup as illustrated in Fig. 3.
The cameras are positioned at the front, left shoulder, wrist, and right shoulder. All cameras are static,
except for the wrist camera, which is mounted on the end effector. We did not modify the default
camera poses from the original RLBench [4]. These poses maximize coverage of the entire table, and
we use a 256 x 256 resolution for better input to the VLMs.

Task Details. We describe in detail each of the 12 tasks for simulation evaluation, both for trained
policies and zero-shot methods, along with their RLBench variations and success conditions. We
have made some modifications to the original tasks to enhance the detection rate by Code-As-Policies
and VoxPoser. The modified .ttms and task.py can be found here

2.1 put block

Filename: put_block.py

Task: Pick up the green block and place it on the red mat.

Success Metric: The success condition on the red mat detects the target green block.

2.2 close box

Filename: close_box.py

Task: Close the box.

Success Metric: The revolute joint of the specified handle is at least 60◦ off from the starting position.

2.3 open box

Filename: open_box.py

Task: Open the box.

Success Metric: The revolute joint of the specified handle is at least 60◦ off from the starting position.

2

https://github.com/Robot-MA/manipulate-anything/tree/main/eval_tasks


2.4 play jenga

Filename: play_jenga.py

Task: Pull out the green jenga block.

Success Metric: The green jenga block is out of its pre-defined location.

2.5 open jar

Filename: open_jar.py

Task: Uncap the green jar.

Success Metric: The green jar is out of its pre-defined capped location.

2.6 pickup cup

Filename: Filename: pickup_cup.py

Task: Pick up the red cup.

Success Metric: Lift up the red cup above the pre-defined location.

2.7 take umbrella

Filename: take_umbrella_out_of_stand.py

Task: Pick up the umbrella out of the umbrella stand.

Success Metric: Lift up the umbrella out of the umbrella stand.

2.8 sort mustard

Filename: sort_mustard.py

Task: Pick up the yellow mustard bottle, and place it into the red container.

Success Metric: The yellow mustard bottle inside red container.

2.9 open wine

Filename: open_wine.py

Task: Uncap the wine bottle.

Success Metric: The wine bottle cap is out of its original position.

2.10 lamp on

Filename: lamp_on.py

Task: Turn on the lamp.

Success Metric: The lamp light up.

2.11 put knife

Filename: put_knife_on_chopping_board.py

Task: Pick up the knife and place it onto the chopping board.

Success Metric: Knife on chopping board.

3



Figure 2: Evaluation of visual prompting. We systematic evaluate 5 different visual prompting
techniques, and found that selected viewpoint sequence yields the highest performance.

Figure 3: Results for visual prompting techniques (Left).We reported the various results for
different visual prompting technique decision, and reported that selected viewpoint sequence yield
the best performance.Simulation scene setup (Right). We leverage 4 different camera for evaluation.

2.12 push block

Filename: push_block_to_target.py

Task: Push the red block down towards the green target.

Success Metric: The red block fails within the green target.

2.13 insert block

Filename: insert_block.py

Task: Push the green block into the jenga tower.

Success Metric: The green block inserted in.

2.14 pick & lift

Filename: pick_and_lift.py

Task: Pick up the red cube.

Success Metric: The red cube is lifted up.

4



Figure 4: Real-world experiment setup (Left). We set up the real-world using this configuration.
Robustness and generalization evaluation. We evaluated MANIPULATE-ANYTHING against
VoxPoser for capability in generalizing to different language instructions and also object-specific
manipulation.

Figure 5: More real-world experiments.

3 Real-world experiments

3.1 Robot hardware setup

The real-robot experiments use a Franka Panda manipulator with a parallel gripper. For perception,
we use a Kinect-2 RGB-D camera mounted on a tripod, at an angle, pointing towards the tabletop.
Kinect-2 provides RGB-D images of resolution 512 × 424 at 30Hz. The extrinsic between the camera
and robot base-frame are calibrated with the easy hand-eye package. We use an ARUCO AR marker
mounted on the gripper to aid the calibration process, as shown in Figure 4.

5



Figure 6: In-depth Examination of VLMs for Manipulate-Anything. The system consists of five
components that utilize VLM API calls. We have provided a detailed breakdown of the inputs and
outputs for each of these VLMs for reference.

3.2 Additional real-world everyday manipulation tasks

Beyond the five real-world experiments used for systematically evaluating MANIPULATE-ANYTHING,
we also have additional real-world demonstrations generated in a zero-shot manner via MANIPULATE-
ANYTHING. These demonstrations cover a range of tasks, from reasoning tasks to more precise
everyday tasks. All of the tasks can be seen in Fig. 6.

4 Baseline implementation details

For most of the baselines we followed the original implementation with minor modifications. For
the Code as Policies baseline we re-implemented most of the environment code using PyRep
instead of PyBullet. This includes the implementation of various motion primitives that form the
exposed API to the language model program. For example, one of such primitives is shown in the
following Figure 7.

5 Additional Ablation Studies

We conducted two main set of ablation studies, we first look at how different visual prompting works
for sub-task verification, and then we further evaluated MANIPULATE-ANYTHINGś robustness and
generalization to language instructions in another set of experiments.

For evaluating different visual prompts for sub-task verification on the put_block task, we employed
the following methods: 1) Set-of-Mark [5] on a single view, 2) Set-of-Mark with bounding box
annotation, 3) Concatenated all viewpoints, 4) Front view only, and 5) Selected viewpoint sequence
as shown in Fig. 2. We observed that the selected viewpoint sequences were the most effective in
achieving correct sub-task verification, obtaining the highest success rate as shown in Fig. 3.

We further evaluated the generalization capabilities of our model in terms of object-specific manipu-
lation and robustness to changes in language instructions. For language instruction variations, we
altered the instructions for the same scene and found that MANIPULATE-ANYTHING outperforms
VoxPoser by 60% over 25 episodes. For object-specific variations, where instructions targeted specific
parts of objects, MANIPULATE-ANYTHING outperformed VoxPoser by 16%, as shown in Fig. 4.

6



6 Prompts

Prompts used for multi-viewpoint VLM selection, task plan generation, action generation and
sub-task verification can be found below.

• Task plan generation: Takes in a natural language instruction, and outputs a task plan in
json file with the correct format.
Simulation: task_planner_generation.txt

• Sub-task verification: Takes in the selected viewpoint rollout along with the verification
condition, and outputs binary ’yes’ or ’no’.
Simulation: sub-task-verification-prompt.txt

• Action-Generation: Takes the action primitive and generates codes for executing the action
in simulation.
Simulation: action_code_generation.txt

• Multi-viewpoint VLM (Verification): Takes in 4 images concatenated into a single frame
with number annotated on top and returns a selection number of the most optimal viewpoint
for verfying the sub-task.
Simulation: MT_Viewpoint_Verification.txt

• Multi-viewpoint VLM (Object centric action): Takes in 4 images concatenated into a
single frame with number annotated on top and returns a selection number of the most
optimal viewpoint for filter the grasp candidate poses.
Simulation: MT_Viewpoint_Verification_Object-centric.txt

7 Best Task Plans and Action Primitives

We ran MANIPULATE-ANYTHING with multi-processing during simulation to obtain the best set of
task plans and action primitives for any given task. This set of information is then used to generate
more data at scale for distilling a policy. We have compiled all the task plan JSON files and action
primitive code that achieved the highest success rates in these tasks.
Best Generated Task Plans: best-task-plans.txt
Skills Library: skills-library.txt

References
[1] W. Yuan, A. Murali, A. Mousavian, and D. Fox. M2t2: Multi-task masked transformer for

object-centric pick and place, 2023.

[2] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou, and J. Zhou. Qwen-vl: A
frontier large vision-language model with versatile abilities. arXiv preprint arXiv:2308.12966,
2023.

[3] J. Tiedemann, M. Aulamo, D. Bakshandaeva, M. Boggia, S.-A. Grönroos, T. Nieminen, A. Ra-
ganato, Y. Scherrer, R. Vazquez, and S. Virpioja. Democratizing neural machine translation with
opus-mt. Language Resources and Evaluation, pages 1–43, 2023.

[4] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[5] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao. Set-of-mark prompting unleashes extraordi-
nary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441, 2023.

7

https://github.com/Robot-MA/manipulate-anything/blob/main/prompts_MA/task_planner_generation.txt
https://github.com/Robot-MA/manipulate-anything/blob/main/prompts_MA/Sub_task_verificaiton.txt
https://github.com/Robot-MA/manipulate-anything/blob/main/prompts_MA/action_code_generation.txt
https://github.com/Robot-MA/manipulate-anything/blob/main/prompts_MA/MT_Viewpoint_Verification.txt
https://github.com/Robot-MA/manipulate-anything/blob/main/prompts_MA/MT_Viewpoint_Verification%20(Object-centric).txt
https://github.com/Robot-MA/manipulate-anything/tree/main/best_plans_MA
https://github.com/Robot-MA/manipulate-anything/blob/main/skill_library.py


Figure 7: Example of one of the primitives implemented for Code as Policies

8


	Manipulate-Anything implementations
	Simulation experiments
	put block
	close box
	open box
	play jenga
	open jar
	pickup cup
	take umbrella
	sort mustard
	open wine
	lamp on
	put knife
	push block
	insert block
	pick & lift

	Real-world experiments
	Robot hardware setup
	Additional real-world everyday manipulation tasks

	Baseline implementation details
	Additional Ablation Studies
	Prompts
	Best Task Plans and Action Primitives

